As operações matemáticas são adição, subtração, multiplicação e divisão
As operações matemáticas abrangem os cálculos que são utilizados para a resolução das equações. Basicamente têm-se a adição, a subtração, a divisão e a multiplicação, que, apesar de abrangerem um raciocínio simples, são de suma importância para realização de qualquer cálculo matemático.
Adição
Na adição existe o cálculo de adicionar números naturais a outros. Essa operação matemática também é conhecida popularmente como soma. O resultado final da adição é chamado de total ou soma e os números utilizados são as parcelas. O operador aritmético, ou seja, o sinal que indica o seu cálculo é o (+). Observe o exemplo: 6 (parcela) + 2 (parcela) = 8 (soma ou total). As propriedades da adição são:
- Elemento neutro: zero, ou seja, qualquer número somado a zero terá como resultado ele mesmo. Ex.: 6 + 0 = 6.
- Comutatividade: a ordem de duas parcelas não altera o resultado final. Ex.: 8 + 2 = 10 e 2 + 8 = 10.
- Associatividade: a ordem de mais de duas parcelas também não altera o resultado, mas é necessário considerar a regra do uso dos parênteses, que significa que deve-se iniciar a adição a partir do que está dentro deles. Ex.: 8 + (2 + 1) = 11 e (8 + 2) + 1 = 11.
Números negativos e positivos: os números positivos e negativos podem ser somados, mas existem algumas regras que devem ser consideradas. Quando os números possuem sinais diferentes (negativos e positivos) o resultado acompanhará o sinal do número maior. Ex.: (-3) + 4 = 1. Já no caso de dois números negativos, o resultado também será negativo. Ex.: (-8) + (-7) = - 15.
Subtração
- O resultado é alterado no caso de mudança na ordem de apresentação dos valores, e nesse caso a diferença terá o sinal trocado. Ex.: 8 - 2 = 6 é diferente de 2 - 8 = -6.
- Fechamento: A diferença de dois ou mais números reais tem como resultado um número real.
- Anulação: Quando o minuendo for igual ao subtraendo tem como resultado da diferença o 0 (zero).
- Não existe elemento neutro.
Números negativos e positivos: Sinais iguais: soma e conserva o sinal. Sinais diferentes: subtrai e conserva o sinal do maior número (maior módulo).
Multiplicação
A Multiplicação está intimamente relacionada à adição, pois pode-se dizer que ela é a soma de um número pela quantidade de vezes que deverá ser multiplicado. O símbolo mais conhecido é o (x), mas muitas pessoas utilizam o (*) ou (.) para representar essa operação. Os nomes dados aos seus elementos são fatores e produtos. Vejamos um exemplo: 4 (fator) x 4 (fator) = 16 (produto). Observe que o exemplo também poderia ser representado: 4 + 4 + 4 + 4 = 16. As propriedades da Multiplicação são:
- Comutatividade: a ordem dos fatores não altera o produto. Ex.: 4 x 2 = 8 e 2 x 4 = 8.
- Associatividade: quando tem mais de dois fatores não importa a sua ordem, pois o resultado será o mesmo. Ex.: (3 x 5) x 2 = 30 ou 3 x (5 x 2) = 30
- Distributividade: quando temos que multiplicar e somar devemos iniciar o cálculo pela multiplicação, mesmo que a soma esteja dentro de parênteses. Ex.: 2 x (3 + 3) = (2 x 3) + (2 x 3) = 6 + 6 = 12.
- Elemento neutro: número 1, sendo que qualquer número multiplicado por ele resultará nele mesmo.
Divisão
Nessa operação é possível dividir dois números em partes iguais. Essa operação tem os seguintes elementos: dividendo, divisor, quociente e resto. O sinal utilizado é (÷), mas podemos ver também os sinais (/) ou (:). No exemplo: 31 (dividendo) ÷ 2 (divisor) = 15 (quociente) 1 (resto). Ao dividir 31 por 2 não temos um resultado exato, sendo assim, temos o 15 como quociente e 1 de resto. As propriedades da divisão são as seguintes:
- A ordem dos elementos altera o resultado final, pois não é comutativa. Ex.: 8 ÷ 2 = 4 é diferente de 2 ÷ 8 = 0,25.
- Não é associativa; na divisão os parênteses devem ser resolvidos primeiro. Ex.: (6 ÷ 3) ÷ 3 = 3 ÷ 3 = 1 é diferente de 6 ÷ (3 ÷ 3) = 6 ÷ 1 = 6.
- Elemento neutro: número 1, ou seja, o valor dividido por ele terá como resultado ele mesmo.
Nenhum comentário:
Postar um comentário